

Phase 1/2 study of novel HER2-targeting, TLR7/8 immune-stimulating antibody conjugate (ISAC) BDC-1001 with or without immune checkpoint inhibitor in patients with advanced HER2-expressing solid tumors

Manish R. Sharma¹, Ecaterina Ileana Dumbrava², Richard D. Carvajal³, Daniel Catenacci⁴, Leisha A. Emens⁵, Glenn J. Hanna⁶, Dejan Juric⁷, Yoon-Koo Kang⁸, Jeeyun Lee⁹, Keun-Wook Lee¹⁰, Bob T. Li¹¹, Kathleen Moore¹², Mark D. Pegram¹³, Paula R. Pohlmann¹⁴, Drew Rasco¹⁵, Alexander Spira¹⁶, Antoinette R. Tan¹⁷, Ding Wang¹⁸, Shelley E. Ackerman¹⁹, Heidi LeBlanc¹⁹, David Dornan¹⁹, Marcin Kowanetz¹⁹, Michael N. Alonso¹⁹, and Edith A. Perez¹⁹ START Midwest, Grand Rapids, MI; ²The University of Texas MD Anderson Cancer Center, Houston, TX; ³Columbia University Medical Center, New York, NY; ⁴University of Chicago, Chicago, IL; ³UPMC Hillman Cancer Center, Pittsburgh, PA; ⁶Dana-Farber Cancer Institute, Boston, MA; ⁷Massachusetts General Hospital, Boston, MA; isan Medical Center, South Korea; ⁸Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ¹⁰Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; ¹¹Memorial Sloan Kettering Cancer Center, New York, NY; ¹⁴Stephenson Cancer Center, Oklahoma City, OK; ¹³Stanford University, Stanford, CA; ¹⁴Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; ¹⁵START, San Antonio, TX; ¹⁶Virginia Cancer Specialists, Fairfax, VA; ¹⁷Levine Cancer Institute, Atrium Health, Charlotte, NC; ¹⁸Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI; ¹⁹Bolt Biotherapeutics, Redwood City, CA

BACKGROUND

- . In spite of advances made in the management of patients with human epidermal growth factor receptor 2 (HER2)-expressing or -driven solid tumors, there remains a significant unmet need for novel approaches to improve patient outcomes.
- Intratumoral delivery of antitumor antibodies and immunostimulatory adjuvants such as toll-like receptor (TLR)7/8 agonists has been shown to activate tumor resident antigen-presenting cells (APCs), driving uptake, processing, and presentation of tumor neoantigens to T cells that mediate antitumor immunity
- · BDC-1001 is delivered systemically and has demonstrated superior preclinical biology. This novel ISAC consists of an investigational biosimilar of the humanized monoclonal antibody trastuzumab chemically conjugated to a TLR7/8 agonist with a non-cleavable linker. BDC-1001 activates human myeloid APCs in addition to retaining antibody-mediated effector functions such as antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP).
- Studies in trastuzumab-resistant xenograft models and syngeneic tumor models indicate that HER2-targeted ISACs elicit potent and durable immune-mediated antitumor efficacy, leading to complete tumor regression in a TLR- and Fc receptor-dependent manner.^{1,2}
- Importantly, BDC-1001 did not induce interstitial lung disease, cytokine release syndrome, or thrombocytopenia in non-human primate studies
- A four-part phase 1/2, first-in-human study has been initiated that evaluates BDC-1001 with or without (+/-) an immune checkpoint inhibitor targeting PD-1 in patients with HER2-expressing or HER2-amplified advanced/metastatic solid tumors.

Traditional Immunotherapies Focus on an Adaptive Immune System

"Traditional" dysfunctional immune response Trafficking of Limited T cell (4) T cells to Priming & 3 Tumors • • Activation 0 Infiltration of 6 5 T cells into Tumors Selected Presentation of (2) Recognition of Tumor Cells umor Antigens by T cells Death of Tumor Cells Killing of Tumor Cells by T cells Release Antigens

T cell Targeted Therapies • Rely on dysfunctional/narrow immune

response. Risk of T cell exhaustion. Some approaches require complex manufacturing/personalization.

Myeloid biology contributes to productive cancer immunity cycle Use innate immunity to create new antitumor immune responses. Amplify antitumor immune response Convert "cold" tumors to "hot." response to additional neoantigens. • Expand antitumor T cell response & killing.

Boltbody ISACs Act at Different Steps of the Cancer Immunity Cycle

Boltbody ISACs initiate new immune response

Boltbody ISACs initiate an entirely new immune response.

Boltbody ISACs combine:

- Precise antibody targeting. Activation of innate immunity Triggering adaptive immune response.
- All within a single therapeutic.

Boltbody ISACs enhance the antigen presentation capability of immunosuppressed APCs, driving a robust new antitumor immune response that can recognize additional neoantigens.

OBJECTIVES

PRIMARY OBJECTIVES

- The dose-escalation phase will define safety and tolerability and determine the recommended phase 2 dose of BDC-1001 as monotherapy and in combination with an immune checkpoint inhibitors.
- The dose-expansion portion of the trial will evaluate preliminary antitumor activity of BDC-1001 alone and in combination with an immune checkpoint inhibitor

SECONDARY OBJECTIVES

• Secondary objectives will evaluate pharmacokinetic (PK) parameters and pharmacodynamic (PD) biomarkers in tumor tissue and in peripheral blood associated with drug exposure.

EXPLORATORY OBJECTIVES

Evaluate exploratory pharmacodynamic biomarkers and potential baseline biomarkers associated with biological activity.

STUDY DESIGN

• This dose-escalation and dose-expansion study is enrolling up to 390 patients with HER2-expressing advanced solid tumors. BDC-1001 is administered IV by syringe pump over 60 minutes (±15 minutes) every 3 weeks.

Combination Therapy with Checkpoint Inhibitor - Parts 2 and 4

ENDPOINTS

Parts 1 and 2

· Incidence of adverse events and serious adverse events graded according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Incidence and nature of dose-limiting toxicities within a 3+3 design. Changes from baseline in clinical safety laboratory values and vital signs. Incidence of potential-immune related toxicities.

- The maximum tolerated dose (MTD) or a tolerated dose below MTD (if MTD is not reached).
- PK variables (eg, Cmax, Cmin AUC0-t AUC0-inf CL, Vz, t¹/₂).
- Incidence of anti-drug antibodies (ADAs).

Additional Endpoints for Parts 3 and 4

- Overall response rate using RECIST v1.1 and iRECIST, disease control rate of confirmed complete response, partial response, lasting 4 or more weeks following the initiation of BDC-1001, duration of response, progression-free survival, and overall survival.
- Antitumor activity in tumors with different levels of HER2 and PD-L1 expression

HER2 Inclusion Criteria

Dose Escalation Cohorts for Parts 1 and 2 • HER2+ in any solid tumor with IHC3+ or IHC2+ (including HER2 low) or gene amplification.

Dose Expansion Cohorts for Part 3 and 4 For HER2+ breast gastric or other HER2+ solid tumors IHC3+ or gene amplification. For HER2 low breast cancer HER2 IHC2+ and negative gene amplification.

- Assess PD biomarkers to demonstrate that BDC-1001 is biologically active, and support dose selection. - Focus on TLR7/8 pathway, myeloid cell, and T cell activation. → Mandatory paired pre-/on-tx biopsies in both escalation and expansion cohorts → Serial blood collections for all patients.
- · Evaluate potential predictive biomarkers of response to BDC-1001. - HER2 status and biomarkers related to immune biology → Baseline (archival or freshly collected) tumor sample, and blood mandated for all patients.
- image analysis.

Status: Phase 1/2 Trial Initiated Q1 2020; Currently in Dose Escalation • Enrollment in monotherapy dose-escalation phase is proceeding well.

- · No unexpected adverse events have been observed to date.
- · Anticipate combination dose-escalation to start Q1 2021.

Expected Upcoming Milestones

- Complete phase 1/2 dose escalation portion in Q1 2021.
- · Initiate phase 2 dose expansions in Q1 2021.
- · Phase 1/2 data anticipated to provide clinical proof of concept.

ClinicalTrials.gov (NCT04278144)

- Abstract Number 603. Covalent attachment of a TLR7/8 agonist to tumor-targeting antibodies drives potent anti-tumor efficacy by synergistically activating FcyR- and TLR- signaling and enables safe systemic administration.
- Abstract Number 605. Systemically administered HER2-targeted ISACs provoke a rapid, local response that engages the innate and adaptive arms of the immune system to eradicate tumors in preclinical models.

ELIGIBILITY

Exclusion Criteria

- History of treatment with a TLR7, TLR8, or a TLR7/8 agonist.
- Use of another investigational agent or anticancer therapy within 4 weeks prior to C1D1 or within 5 estimated elimination half-lives, whichever is shorter
- Use of another anti-HER2 based therapy within 4 weeks prior to C1D1. History of severe hypersensitivity to any ingredient of the study drug(s),
- including trastuzumab.

Anti-PD1 Combination Therapy Exclusions

- · Patient has a history of immune-mediated colitis. Patient has an active autoimmune disease with the exception of autoimmune endocrinopathies that are stable on hormone replacement therapy
- Hypersensitivity to pembrolizumab or particular excipients that are used for formulation.

BIOMARKER ASSESSMENTS

· Changes in TLR7/8 pathway activation, myeloid, and T cell content, and activation status by gene expression profiling, and tissue

STATUS Q1

BDC-1001 PRECLINICAL PRESENTATIONS AT SITC 2020

Virtual Poster Hall Nov 11-14, 9:00 am-5:00 pm EST → Live Q&A Nov 11 5:15-5:45 pm EST Nov 13 4:40-5:10 pm EST

REFERENCES

- 1. Ackerman S, et al. TLR7/8 immune-stimulating antibody conjugates elicit robust myeloid activation leading to enhanced effector function and anti-tumor immunity in pre-clinical models. Cancer Res. 2019:79 [13 Suppl].
- 2. Ackerman S, et al. HER2-targeting TLR7/8 immune-stimulating antibody conjugates elicit robust myeloid activation and anti-tumor immune responses in a TLR- and FcR- dependent manner. J Immunother Cancer. 2019;7:283.

