Covalent attachment of a TLR7/8 agonist to tumor-targeting antibodies drives potent anti-tumor efficacy by synergistically activating FcyR- and TLR- signaling and enables safe systemic administration

Shelley E. Ackerman^{1,2}, Felix J. Hartmann³, Cecelia I. Pearson¹, Joseph C. Gonzalez¹, Po Yi Ho¹, Samuel C. Kimmey³, Andrew Luo¹, Benjamin Ackerman⁴, Arthur Lee¹, Richard P. Laura¹, Jason C. Paik³, Karla A. Henning¹, David Y. Jackson¹, Steven J. Chapin¹, Bruce H. Devens¹, David Dornan¹, Sean C. Bendall³, Edgar G. Engleman³, Michael N. Alonso^{1,3}

¹Bolt Biotherapeutics, ²Stanford University Department of Bioengineering, ³Stanford University Department of Pathology, ⁴Johns Hopkins University Department of Biostatistics

Introduction

BOLT

Immune stimulating antibody conjugates (ISACs) covalently attach TLR7/8 immune stimulants to tumor-targeting antibodies. ISACs can be delivered systemically and act locally in the tumor microenvironment by requiring the following biological steps to elicit immune activation: 1) tumor antigen recognition, 2) Fc receptor mediated phagocytosis by myeloid antigen presenting cells (APCs), and 3) activation of endosomal TLR7 and TLR8. Here, we demonstrate that covalent attachment of our TLR7/8 agonist to tumor-targeting antibodies not only enables the resulting ISACs to be safely administered systemically in preclinical models, but also unexpectedly promotes synergy between the FcyR and TLR pathways that results in amplified anti-tumor immunity in mice and robust immune activation in human leukocytes as compared to the co-administration of the components.

Boltbody[™] Immune-Stimulating Antibody Conjugates

Figure 1: Systemically-delivered ISACs outperform locally-administered mixture. SCID/beige mice were dosed once with 5 mg/kg of ISAC (intraperitoneal), trastuzumab (intraperitoneal), or an equimolar mixture of trastuzumab (intraperitoneal) and TLR7/8 agonist (intratumoral). Data are shown as mean ± SEM with 3-5 mice per group.

Figure 2: Rituximab ISACs elicit amplified intracellular signaling relative to mixture in leukocytes expressing requisite TLR and FcvRs. Human PBMCs were co-cultured with CD20+ Toledo tumor cells at a 1:1 ratio and stimulated for 15 minutes with rituximab ISAC or an equimolar mixture of rituximab and TLR7/8 agonist.

Figure 3: Rituximab ISACs elicit amplified FcvR and TLR-related intracellular signaling in monocytes and cDCs. Human PBMCs were co-cultured with CD20+ Toledo tumor cells at a 1:1 ratio and stimulated for 15 minutes. Signaling induction is reported as the arcsinh fold change relative to the unstimulated co-culture: data shown as mean ± SEM.

Figure 4: DREMI/DREVI analysis of monocytes reveals ISAC-induced synergy between FcyR and TLR-related pathways. ISAC stimulation led to a reduced threshold for activation (inflection point of the curve fit) and stronger signal intensity (AUC) as compared to the mixture. Signal density is visually scaled as high (red) to low (blue).

Figure 5: Rituximab ISACs require Fc-mediated entry and TLR ligation to induce amplified signaling. Human PBMCs were co-cultured with CD20+ Toledo tumor cells were stimulated for 15 minutes and analyzed by CyTOF. For FcyR signaling blockade, cells were pre-treated with R406, a small molecule inhibitor of Syk.

mg/kg every 5 days through day 25. Data are shown as mean ± SEM with 5 mice per group.

- 2. Systemically-administered ISACs outperform the locally-administered mixture in vivo, and rely on Fc receptordriven phagocytosis and functional TLR agonism to mediate anti-tumor efficacy.
- 3. BDC-1001, a HER2-targeted ISAC, is being assessed in an ongoing Phase 1/2 trial (NCT04278144), as described in Sharma et al, Trial in Progress Abstract #401.

ABSTRACT 603

ISACs require FcyR-mediated entry and functional TLR7/8 agonism to mediate anti-tumor efficacy

- Trastuzumab ISAC
- → Inactive Fc: Trastuzumab-N297A ISAC
- Inactive TLR: Trastuzumab TLRnull-ISAC
- Trastuzumab
- Figure 6: ISACs require functional Fc and TLR agonist in vivo. NSG mice were dosed systemically with 5

Conclusions

1. ISACs provide unexpected biological advantages over mixture of antibody and TLR agonist through promotion of synergy between FcyR and TLR pathways (see LeBlanc et al. Abstract #605 for further in vivo demonstration).